Beacon4
From Hackstrich
Beacon4 will be the fourth incarnation of the flagpole beacon (after Beacon2 and Beacon3), for Burning Man 2012. This year the plan is to take a different approach, and light the entire scaffold tower rather than just a beacon on top of the flagpole.
Contents
Project Status
- 2012-06-07: Work on StrichLux continues. Evaluated lots of software, Lightjams is looking the best at this point, though would require Windows.
- 2012-05-27: Completed rev. 1 StrichLux system design of all modules required for this project and sent all boards off for manufacturing.
- 2012-04-30: Started planning the power architecture for the project.
- 2012-04-29: Work continuing on IO-DMX module.
- 2012-04-24: Permission received!
- 2012-04-23: Requested permission from NeonBunny to attach LEDs to the tower.
- 2012-04-22: Started putting together idea.
Outstanding Issues
- Software we were thinking of using was QLC (but it only supports 4 universes) or MagicQ (but it's x86-only which means more power draw)
- If we go x86, the fit-PC might be a good choice, it's a 6-8W x86 box in a small metal enclosure
- As of June 2012 the leader in the software investigation is LightJams, which would be Windows on x86
Ideas/Plans
- Main idea is to cover most of the scaffold tower in addressable LED strips, driven by multiple StrichLux modules
- Art-Net will be used between the controller and the StrichLux box
- BeagleBone is being looked at to control the whole display
- <1W idle, 1.75W full load
- Comes with onboard Ethernet
- Need to find a fanless very low power 4 or 5 port Ethernet switch
- Allied Telesis AT-FS705LE V5 might work, it's rugged, low power (1.5-2.5W), and cheap
- But it takes 7.5V which would be another regulator and is a potential point of failure that would bring the entire system down
- Alternative option is the GarrettCom S14H-Hi, it takes 8-15V in via screw terminals and is ruggedized, but $140 and draws 4W
- Best option may be the Sixnet SL-5ES-1, it's $100, rugged, takes 10-30VDC via screw terminals, and only draws 2W
- Allied Telesis AT-FS705LE V5 might work, it's rugged, low power (1.5-2.5W), and cheap
System Components (out of date as of 2012-06)
- BeagleBone (controller)
- 4-port fanless Ethernet switch
- 1 or 2 StrichLux boxes (transform engine/protocol converter)
- Many LED strips (need to work out dimensions)
- Power setup (need to work out power details)
- Debugging terminal (XO-1?)
Power Details
- Power requirements (peak)
- BeagleBone - 1.75W
- Ethernet Switch - 1.7W (assuming AT-FS705LE V5)
- StrichLux box(es) - ???
- LEDs - 10W/m (need to measure to confirm)
Power Architecture
http://www.asciiflow.com/#4007824742034929919/13747898[YOB-2] +--------------+ +--->| LED Strip 0 | | +--------------+ | | +--------------+ +---------------+ | +->| LED Strip 1 | +--------------+ | +-+ | +--------------+ | | | StrichLux +---+ | Dome | +->| Controller A +---+ +--------------+ | Lighting | | | +-+ +->| LED Strip 2 | | | | +---------------+ | +--------------+ +--------------+ | | ^ | | +--------------+ | | +--->| LED Strip 3 | +----------+---------+ | +--------------+ | | | | | | +--------------+ | +-+ +--->| LED Strip 4 | | | | +--------------+ | | | | | | +--------------+ | | +---------------+ | +->| LED Strip 5 | +---------------+ | | | +-+ | +--------------+ | | | Distribution | | StrichLux +---+ | Battery +=======>| +--->| Controller B +---+ +--------------+ | | | Box | | +-+ +->| LED Strip 6 | +---------------+ | | +---------------+ | +--------------+ | | | | | | +--------------+ | | +--->| LED Strip 7 | | | +--------------+ | +-+ | | | +--------------+ +--+-------+---------+ | +--->| LED Strip 8 | | | | | +--------------+ +---------+ | | | v v | | +--------------+ +--------------+ +--------------+ | +---------------+ | +->| LED Strip 9 | | | | | | | +-+ | +--------------+ | Convienience | | System | | | StrichLux +---+ | Outlets | | Controller | +->| Controller C +---+ +--------------+ | | | | | | +->| LED Strip 10 | +--------------+ +--------------+ +---------------+ +--------------+
LED Details
- Length required (very roughly until I get real numbers from Skibit)
- Main vertical bars: 4 * 20ft = 80ft
- Ladder vertical bars: 10 * 3ft = 30ft (but 2 of those are near ground level)
- Rigid guys: 4 * 6ft = 24ft
- Ladder rungs: 8 * 4 * 1.5ft = 36ft
- Total: 170ft (plus probably want a bit extra just in case, so 11 strips or 180ft)
- That's 1760 LEDs and 550W peak!
StrichLux Enclosures
- Each StrichLux controller with its 4 output modules, 1 input module, and 1 power module will need an enclosure of some kind.
- Pelican case? Could do one larger one with all 3 controllers in it, or 3 smaller ones
- Assuming each StrichLux box has its own enclosure, would need a bunch of connections made through it:
- Power - 2x12V @ 20A each - 4 20A power pins
- Ethernet input - RJ45 - 1 RJ45
- Strip outputs - SPI+5V - 2 signal pins, 2 10A power pins each x 4
- JAE SRCN2A16-7S / SRCN6A16-7P would be good and extremely rugged, but the cost may be too high
Test Equipment
- Want to be able to power the whole setup from AC power for configuration/testing/programming
- ATX power supplies provide plenty of +12V which could feed the PWR-DC5 modules
- A modular supply like the OCX ZT-series would be cleanest, could modify the cables with Sabre connectors on the ends
- Need 100W per channel, 200W per board, 600W total @ 12V
- 100W per channel @ 12V means 8.33A
- PCI-E and 8-pin CPU power connectors on ATX PSUs provide 6 amps per pin
- PCI-E connectors have 3 pin pairs each
- 8-pin CPU power connectors have 4 pin pairs each
- Need four pins per board
- Two boards get 8-pin CPU power -> Sabre connectors
- The last board gets a 2xPCI-E power -> Sabre connector
- OCZ ZT-series 750W power supply has all the required connectors
- ATX power supplies provide plenty of +12V which could feed the PWR-DC5 modules